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INTRODUCTION N 68' 235 85

The well-known general space vehicle trajectory estimation problem
consists of processing a body of tracking and other observational data
to estimate not only the parameters of the trajectory itself, but also
a set of other uncertain parameters which are significant in the problem.
Such other parameters include the tracking station locations, measure-
ment biases, and assorted astrodynamic constants.

It is also conceivable to include in this list the velocity of
light, since its uncertainty has a significant effect on certain types
of measurements. Thus, in principle, it would seem reasonable to add
the velocity of light to the 1list of state variables, and thereby obtain
a better estimate not only of the trajectory parameters, but also of the
velocity of light itself.

The purpose of this paper is to show that the hope of improving the
knowledge of the velocity of light in this way is an illusion, that the
velocity of light is an unobservable parameter in trajectory estimation,
and that its inclusion in the problem is not only inappropriate but also
can lead to erroneous results. Although many readers of this paper may
already know and understand this, the analysis presented here is felt to
be useful for others who have had difficulty understanding the fact, and
also may give some insights into other observability problems.

OBSERVABILITY IN SEQUENTIAL ESTIMATION

Observability generally means the ability of a measurement or obser-
vation scheme to "see" and separate out in some sense all the various
states of a multivariable system. Thus, ordinarily, observability is
regarded as a property of the measurement scheme itself. However, there
is more to observability than this in the case of estimation based on
noisy observations. This is particularly clear for sequential estima-
tion, as illustrated by the well-known equations for sequential minimum-
variance processing of data in a linear system:
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Here, x and X' are the estimates of the state vector x, respectively,
before and after incorporating the information contained in the scalar
cbservation, y = Hx + e, where e is a random observation error with
zero mean and variance ¢q; P is the covariance matrix of the error in
estimate, P = B(x - %)(x - %)T.

Observability has to do with the information content of the obser-
vation relative to the state x. Note that if an element of the PHT
vector is zero, then the estimate of the corresponding element of the
state remains unchanged, regardless of the size of the residual, (y - HX) .
Also, the corresponding row and column of AP = (PHT)(HP)/(HPHT + q) will
be zero, so that no change occurs in these elements of the covariance
matrix. For the purposes of this paper, a state element is said to be
unobservable if the observations do not change the estimate of that ele-
ment. Thus, so far as the observation y = Hx + e is concerned, the
ith element of the vector PHL is zero.

Observability thus depends not only upon the H row vector which
characterizes the observation, but also upon P. It is, therefore,
crucial that the correct P matrix be used in considering gquestions of
observability in sequential estimation. In particular, one must be con-
cerned with the initial P matrix for a given problem, and be sure that
it properly summarizes the a priori knowledge of the state x as it is
supposed to. This, it will be noted, is in contrast to statements which
sometimes have been made to the effect that the initiasl P matrix is
not too material, or can be specified somewhat arbitrarily.

SPECIFICATIONS OF A PRIORI COVARIANCE MATRIX

For a typical trajectory estimation problem, the state elements are
vehicle position and velocity (six elements) » tracking station location
(three elements per station), earth radius, earth-moon distance, earth
mass, moon mass, velocity of light, etc. The initial covariance matrix
summarizing the a priori distribution of error in the estimates of all
these variables can be constructed from independent measurements of each
of the variables. A typical example is the set of observations used
initially to determine the tracking station locations. Assuming that
surveying techniques were used, which employ (among other things) dis-
tance measuring equipment (DME), it can be argued that the uncertainty
in the velocity of light enters in the following way. Assume that DME
uses a two-way phase measurement,
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where @ 1s the phase shift of an electromagnetic wave of frequency f
traversing the distance 2R, and c¢ 1is the velocity of propagation.

If the state variables are taken to be R and c, then the linearized
form of equation (3) is

AP =

Yot o _ bafR 4c (4)
c c c

where AR and Ac/c may be defined as the state variables of the linear-
ized system. In terms of the measurement of AR, equation (4) may be
written as

MRy =22z -REE (5)

This linearized observation equation implies an H matrix (with respect
to the variables AR, Ac/c), which is

H=[1 -R] (6)

The analysis of all prior observations on the state space is, of
course, more complicated than the simple case described above, inasmuch
as all observations must be expressed in terms of a common reference
system. However, it can be shown that as long as the totality of the
prior observations "span" the state space (that is, P, 1is nonsingular),
they can be summarized by a set of equivalent measurements having H
matrices of the same form as (6), namely, they are direct with respect
to all the state variables except 4c/c, and indirect with respect to
the latter. For the three components of tracking station location, the
complete H matrix (considering, for the moment, only those variables
which directly affect the surveying measurements) is

1 0 0 'xsta

Hgta = |0 1 O -ygta (7

For the various astrodynamic constants considered a similar analy-
sis can be applied, the details of which are not shown here, which
results in similar equivalent H matrices. For the radius of the earth
and the earth-moon distance, for instance, we obtain

]
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and for the masses of the earth and of the moon,
Hyp = (1 -3pgl
5] B

(9)
H“M = [1 "3PM]

(In equations (8) and (9) zero elements in H have been omitted for
simplicity.) Equations (9) indicate that the sensitivity of the equiva-
lent measurements of the masses to the velocity of light uncertainty
ere minus three times the respective u's. The H wmatrix for the
direct a priori velocity of light measurements is simply

Ho.=[0 o ... 0 1] (10)

since it is not dependent on any of the other state variables.

In regard to the a priori observations of the spacecraft trajec-
tory parameters, a simple analysis is not possible, so we will use here
a heuristic argument. We will assume that the trajectory parameters
used are the components of the instentaneous position and velocity vec-
tors, and that the time of injection is ty. The a priori (i.e., before
to) observations include all measurements made at the launch site, and
tracking and other measurements during the launch. The totality of
these observations can be summarized in terms of equivalent direct mea-
surements of Xy, ¥y, Zyv, Xy, ¥y, 8nd Zy, with sensitivity to the
velocity of light uncertainty Ac/c, just as in the case with the pre-
viously considered variables. Analysis to determine the Ac/c sensi-
tivity coefficients is complicated, but it is reasonable to expect that
they would turn out to be precisely the coefficients which would result
if real direct measurements with DME could be, and were, made. As has
been shown, these coefficients are the negatives of the respective state
variables. Thus, we assume that the equivalent H matrix for this part

of the state is o —
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again excluding all zero columns.

Collecting all the equivalent measurement matrices, equations (7)
to (11), we obtain a total a priori H matrix of the form :

Hy = “-%-‘ (12)



where the last column is the set of sensitivity coefficients for the
Oc/c  uncertainty. Associated with the set of equivalent measurements
there is an equivalent measurement error covariance matrix, Q,, which,
partitioned in the same manner as HO, can be represented as

]
|
Qo = [-m—d-m- (13)
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Here, the zeroes mean that it is assumed that the random errors in the
direct measurement of ¢ are uncorrelated with the random errors in
the other measurements.

With the a priori Hy and Qy matrices, it is a simple matter to

form the a priori estimation covariance matrix, if a least-squares
reduction of the a priori data is assumed:

- g Y gt
P, = Hy Qg

a1 + geea’ | -qee (28)

VELOCITY OF LIGHT OBSERVABILITY IN TRAJECTORY ESTIMATION

Having a representation of the a priori P, matrix, we now consider
the processing of a scalar observation characterized by an H mstrix

H= [H | b] (25)

where b is the (scalar) sensitivity of the observation to the 4c/c
uncertainty. It is seen that the POHT vector is given by

O e (16)
° —a,(aTHE - )

where the lower element is the one associated with the Ac/c variable.
As previously stated, Ac/c is unobservable if and only if the last
element of P,HT is zero, which requires that

b = Hoa (17)

The question in considering the observability of Ac/c in trajec-
tory estimation is whether or not the observations made of the vehicle
have the property (17). But before taking up this matter, it is



necessary to consider the fact that in sequential trajectory estimation
vhere the epoch is current time, the dynamics of the problem cause Py
to change. In P,, as represented by equation (14), it is noted that
the last column (except one element) is proportional to the a vector.
Now, since the linearized system (state) equation is of the form

X = Fx + Gu . (18)

the P matrix, in the absence of observations, varies with time accord-
ing to the differential equation:

P = FP + PFT + GRGT (19)

where R = E[uuT]. From equation (19) it is easy to show that in the
present problem the last column of P, which we may call Pe (i.e.,
P =[Py | pcl), obeys the differential equation

i

Pe = Fp, (20)

which is the same as the system equation (18) except that there is no
random forcing function equivalent to wu. Thus, where Pe 1s initially

-a
Po(to) = qo|--- (21)
1
at a later time it would become
Pelt) = o(t,t5)pe(to) (22)

where ¢ is the transition matrix of the system represented by equa-
tion (18). In partitioned form,

(Dl I 0
ot ,t5) = | —=-=--= (23)
o 1 1
and
—<I>J_a
Po(t) = gc|---- (2%)
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Now, the element of the PHT vector which affects the estimate of ¢
is the scalar product of the p; and HT vectors:

(PE ) pg jo = HPe

Gc[-Hz0a +b] (25)

tl



Considering that ©3 is the matrix of partial derivations of the state
vector at t with respect to the state vector at t,,

ox(t)

O, =
b k(g

(26)

and Hy and b are, respectively, the partials of the measurement quan-
tity M with respect to the state variables and Ac/c, at time t,
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equation (25) can be written as g
T B} B BM(t):‘T [ax(t) ] OM(t) 8
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which, by factoring out the scalar JOM(t)/oM(t,), becomes
aM(t) oM(to) 5 OM(to)
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It is seen, therefore, that if the unobservability condition - namely,
the quantity in brackets in (29) is zero - at any time (after all, tg
is arbitrary), then it will also be satisfied at any later time. That
is to say, the unobservability condition is time invariant, and only
the situation at t, need be considered to establish whether or not ¢
is observable.

Now let us consider the properties of certain types of observations.
First, for range measurements from an earth-based tracking station, where
range 1is given by
2,1/2

J

(30)

2 2
R = [(xy - xsta)” * (¥y - ¥sta)™ + (2y - Zgta)

it is easy to show that the nonzero elements of the H matrix (the
Partials of range measurement with respect to all relevant state vari-
ables) are as given in Table I.

TABLE I
Variable Xy v 2y Xgta Ysta Zgta efe
P/ Xy Yv Zy Xsta Ysta 25ta 1
Xv - Xsta [yv - ysta | Zv - Zsta | Xv - Xsta | Yv - ysta _ Zv - Zsta R
HR R R R R R R




In the table the elements of the p, vector, normalized by q., are
also given. The last element of HR 1is -R, which is b for the
range measurement. It is evident here that the unobservability condi-
tion is satisfied, i.e., Hza = b. Note that this is the same as saying
that the dot product of the HR and p, vectors is zero.

Next, consider the case of range-rate measurements. Range rate is

1/2

(31)
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R = [(%v - Xgta)” + (3v - ¥sta)™ + (2y - Zsta)”]
The partials which make up HR are more complex than those of Hg.
Although the variables ZRgtg, Ystas Zsts need not be introduced as
part of the state due to their functional dependence on Xgtg, Ystar

Zgtgs» 1t 18 convenient to do so here. The partials are given in Table II,
together with the corresponding elements of pc/qc-

TABLE 11
. =T =7 =T =T
Variables R, R} Ritq R5tg | Oc/c
= =m =T =T
Pe/% Ry R, Rsta Rsta 1

" T N i T 2T
He R_RR R R _RR R _R
R R R2 > R R2 B

In Table II, vector notation has been used for brevity. With a little
algebra it can be seen that HRp. = 0, although this is not so cobvious
as in the case of Hp. Thus, Ac/c is unobservable with R measurements.

The results indicated by the analysis given here have been verified
by means of a computer simulation of range/range-rate tracking of a space
vehicle, which shows that range/range—rate tracking does not give an
improvement in the knowledge of ¢ provided that the correct initial P
matrix is used. Results have also been obtained which show that if the
initial correlations between Ac/c and the other state variables are
selected to be zero, then an order of magnitude (or better) improvement
is indicated in the knowledge of c¢ in certain trajectory estimation
situations. This indicates clearly that the specification of proper
initial correlations is crucial.

Now consider some angle-type measurements. One case is the measure-
ment of the antenna pointing angle for an earth-based tracking station.
This is equivalent in a planar problem to the measurement of the angle

between the range vector R and the earth-vehicle vector Ry:
R"_R-v

R (32)

d = cos™1



For a simple planar problem, the corresponding H matrix is given in
Table III.

TABLE III
Variable X, v Xsta Ysta acfe
Po/% x, v Xsta Ysta 1
(yv - ysta)® | (xv - %sta)(yv - ysta) | (yv - ¥sta)® | (xv - xsta)(yv - ¥sta)
Hg - - 0
R3 sin B R3 gin B R® &in B R3 sin &

As is seen, the measurement of © is not affected by the Ac/c uncer-
tainty, that is, the b element of Hg is zero. Nevertheless, we see
that Hgpe = 0, and & observations, therefore, give no information on

On-board-type angle measurements can also be considered. Two types
are possible: (1) the direction of the line of sight from vehicle to
earth (or other planet), as obtained from sextant or theodolite observa-
tions, and (2) the subtended angle of the earth (or planet). Considering
the following three measurements,

a = declination
B = right ascension of earth from vehicle
7 = half-subtense

the corresponding H matrix is given in Table IV.

TABLE IV
Variable Xy Yo Zy R | Ac/c
Pc/qc X, Vv Zy REg 1
2 2v1/2
q Xyly Yvav (xv + ¥%) o o
a - 2
B R R | ®
Hg oW _é_.xLé_ 0 o]l o
x@ + y% (xy + y¥)
R Rpy. Rpz
H, _ E:v _ E2v _ E2v 1 o
Ry Ry Ry

Again, it is seen that such observations contain no information relative
to the velocity of light.
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Although the observations described here are the most common types
considered in trajectory estimation, this is by no means an exhaustive
list. Furthermore, no easy generalization is apparent. Hence, it is
not possible at this point to state unequivocally that there are no
observation types in trajectory estimation which would improve the knowl-
edge of the velocity of light. The pattern is convincing nonetheless.
What appears to be the case is that only direct measurements of the
velocity of light, that is, repetitions of the laboratory experiments,
can be expected to improve the estimate of c.

ELIMINATION OF Ac/c FROM THE ESTIMATION PROBLEM

From the foregoing it appears that there is no point in complicat-
ing the trajectory estimation problem by including the velocity of light
as a parameter to be estimated. One way of eliminating this parameter
follows directly from the preceding analysis. It is clear that repeated
observations of the trajectory improve the knowledge only of a subspace
of the state space, and are eqQuivalent to reducing the Q3 observation
error covariance matrix in equation (14). The limiting P matrix thus
can be obtained by letting Qi approach zero in equation (14):

T 1
aa, II -a
Puin = e |-mzrC (33)
, -a 11
|
Obviously, observations having H matrices of the form H = [Hy ! Hsa]

1
have no effect on Ppip, that is, PpipHT = 0. Thus, &c/c  can be elimi-

nated from the estimation problem by subtracting Ppin from the initial
Py matrix. This leaves only zeroes in the last row and column of the
reduced P matrix, and since these remain zero throughout the problem
they need not be carried. At any time the Ppijp matrix can be added
onto P, of course, if a representation is desired of the total
uncertainty in the estimate of the state.

Another way of eliminating the velocity of light from consideration
is by using a different definition of the problem at the outset. It
should be recognized that all of the really accurate distance measure-
ments utilize electromagnetic radiation, and, in effect, measure not
distance as such but rather the time it takes light to traverse the dis-
tance. Thus, the scale of things in the universe must always be uncer-
tain to the same degree as is the velocity of light. It should be noted,
however, that this uncertainty really is a matter of the definition of
the unit of length. Perhaps we should have noted in the beginning that
the modern definition of the wmeter is so many wavelengths of the orange-
red line of Krypton 86, not the platinum bar in a vault in France. 1In
terms of the modern standard, then, no observations, a priori or other-
wise, are affected by the uncertainty in the velocity of light, and the
latter simply does not enter the picture. What this means is that in
terms of the modern standard meter the scale of things is known more
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accurately than in terms of the old meter. The difference is the uncer-
tainty in the calibration of the two meters relative to each other,
which is the same as the uncertainty in the velocity of light.

CONCLUSIONS

It appears that the velocity of light is not observable in trajec-
tory estimation problems - or for that matter, in any other problem in
which the velocity of light enters only indirectly. It should, there-
fore, be eliminated from consideration in such problems.

It has also been shown that when the velocity of light uncertainty
is considered it is crucial that the correct a priori correlations be
used in the estimation covariance matrix. Otherwise the results would
show an erroneous "improvement” in the knowledge of the velocity of
light. This fact suggests the probability that proper a priori correla-
tions are important for other variasbles as well in order not to obtain
erroneous, overly optimistic results in estimation problems.



